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1 Relations

1.1 Binary relations

A (binary) relation R from set U to set V is a subset of the Cartesian product
U×V . If (u, v)∈R , we say that u is in relation R to v . We usually denote this by
uRv . Set U is called the domain of the relation and V its range (or: codomain).
If U =V we call R an (endo)relation on U .

1.1 Examples.

(a) “Is the mother of” is a relation from the set of all women to the set of all people.
It consists of all pairs ( person1 , person2 ) where person1 is the mother of
person2 . Of course, this relation also is an (endo)relation on the set of people.

(b) “There is a train connection between” is a relation on the set of cities in the
Netherlands.

(c) The equality relation “ = ” is a relation on every set. This relation is often
denoted by I (and also called the “identity” relation). Because, however, every
set has its “own” identity relation we sometimes use subscription to distinguish
all these different identity relations. That is, for every set U we define IU by:

IU = { (u, u) | u∈U } .

Whenever no confusion is possible and it is clear which set is intended, we drop
the subscript and write just I instead of IU , and in ordinary mathematical
language we use “ = ”, as always. So, for any set U and for all u, v∈U , we
have: uI v ⇔ u= v .

(d) Integer n divides integer m , notation n|m , if there is an integer q∈Z such that
q∗n=m . Divides | is the relation on Z that consists of all pairs (n,m) ∈ Z× Z
with (∃q : q∈Z : q∗n=m ) .

(e) “Less than” ( < ) and “greater than” ( > ) are relations on R, and on Q,Z, and
N as well, and so are “at most” ( ≤ ) and “at least” ( ≥ ).

(f) The set { (a, p) , (b, p) , (b, q) , (c, q)} is a relation from {a, b, c} to {p, q } .

(g) The set { (x, y) ∈ R2 | y = x2 } is a relation on R.

(h) Let Ω be a set, then “is a subset of” ( ⊆ ) is a relation on the set of all subsets
of Ω .

Besides binary relations we can also consider n -ary relations for any n≥ 0 . An n -ary
relation on sets U0, · · · , Un−1 is a subset of the Cartesian product U0 × · · · × Un−1 .
Unless stated otherwise, in this text relations are binary.

Let R be a relation from set U to set V . Then for each element u∈U we define
[u ]R as a subset of V , as follows:
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[u ]R = {v∈V | uRv } .

(Sometimes [u ]R is also denoted by R(u) .) This set is called the (R -)image of u .
Similarly, for v∈V a subset of U called R[v ] is defined by:

R[v ] = {u∈U | uRv } ,

which is called the (R -)pre-image of v .

1.2 Definition. If R is a relation from finite set U to finite set V , then R can be
represented by means of a so-called adjacency matrix ; sometimes this is convenient
because it allows computations with (finite) relations to be carried out in terms of
matrix calculations. We will see examples of this later.

With m for the size – the number of elements – of U and with n for the size
of V , sets U and V can be represented by finite sequences, by numbering their
elements. That is, we assume U = {u1, · · · , um } and we assume V = {v1, · · · , vn } .
The adjacency matrix of relation R then is an m×n matrix AR , say, the elements
of which are 0 or 1 only, and defined by, for all i, j : 1≤i≤m ∧ 1≤j≤n :

AR[ i, j ] = 1 ⇔ uiR vj .

Here AR[ i, j ] denotes the element of matrix AR at row i and column j . Note that
this definition is equivalent to stating that AR[ i, j ] = 0 if and only if ¬(uiR vj ) , for
all i, j . Actually, adjacency matrices are boolean matrices in which, for the sake of
conciseness, true is encoded as 1 and false as 0 ; thus, we might as well state that:
AR[ i, j ] ⇔ uiR vj .
2

Notice that this representation is not unique: the elements of finite sets can be as-
signed numbers in very many ways, and the distribution of 0 ’s and 1 ’s over the
matrix depends crucially on how the elements of the two sets are numbered. For
instance, if U has m elements it can be represented by m! different sequences of
length m ; thus, a relation between sets of sizes m and n admits as many as m! ∗ n!
(potentially different) adjacency matrices for its representation. Not surprisingly, if
U =V it is good practice to use one and the same element numbering for the two U ’s
(in U×U ). If 1≤i≤m then the set [ui ]R is represented by the row with index i in
the adjacency matrix, that is:

[ui ]R = { vj | 1≤j≤n ∧ AR[ i, j ] = 1 } .

Similarly, for 1≤j≤n we have:

R[vj ] = { ui | 1≤i≤m ∧ AR[ i, j ] = 1 } .

1.3 Examples.

(a) An adjacency matrix for the relation { (a, p) , (b, p) , (b, q) , (c, q)} from {a, b, c}
to {p, q } is:
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 1 0
1 1
0 1

 .

(b) Another adjacency matrix for the same relation and the same sets is obtained
by reversing the order of the elements in one set: if we take (c, b, a ) instead of
(a, b, c ) and if we keep (p, q ) (as above), then the adjacency matrix becomes: 0 1

1 1
1 0

 .

Note that standard set notation is over specific, as the order of the elements in
an expression like {a, b, c} is irrelevant: {a, b, c} and {c, b, a} are the same
set! Therefore, when we decide to represent a relation by an adjacency matrix
we need not take the order of the set’s elements for granted: we really have
quite some freedom here.

(c) An adjacency matrix for the identity relation on a set of size n is the n×n
identity matrix In :

In =


1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

This matrix is unique, that is, independent of how the elements of the set
are ordered, provided we stick to the convention of good practice, that both
occurrences of the same set are ordered in the same way.

(d) An adjacency matrix of relation ≤ on the set {1, 2, 3, 4, 5} is the upper trian-
gular matrix

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 .

* * *

Some relations have special properties, which deserve to be named.

1.4 Definition. Let R be a relation on a set U . Then R is called:
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• reflexive, if for all x∈U we have: xRx ;

• irreflexive, if for all x∈U we have: ¬(xRx) ;

• symmetric, if for all x, y∈U we have: xRy ⇔ yRx ;

• antisymmetric, if for all x, y∈U we have: xRy ∧ yRx ⇒ x= y ;

• transitive, if for all x, y, z∈U we have: xRy ∧ yRz ⇒ xRz .

1.5 Examples. We consider some of the examples given earlier:

(a) “Is the mother of” is a relation on the set of all people. It is irreflexive, anti-
symmetric, and not transitive.

(b) “There is a train connection between” is symmetric and transitive. If one is
willing to accept traveling over a zero distance as a train connection, then this
relation also is reflexive.

(c) On every set relation “equals” ( = ) is reflexive, symmetric, and transitive.

(d) Relation “divides” ( | ) is reflexive, antisymmetric, and transitive.

(e) “Less than” ( < ) and “greater than” ( > ) on R are irreflexive, antisymmet-
ric, and transitive, whereas “at most” ( ≤ ) and “at least” ( ≥ ) are reflexive,
antisymmetric, and transitive.

(f) The relation { (x, y)∈R2 | y = x2 } is neither reflexive nor irreflexive.

2

For any relation R the proposition (∀x, y : x, y∈U : xRy ⇔ yRx ) is (logically)
equivalent to the proposition (∀x, y : x, y∈U : xRy ⇒ yRx ) , which is (formally)
weaker. Hence, relation R is symmetric if xRy ⇒ yRx , for all x, y∈U . To prove
that R is symmetric, therefore, it suffices to prove the latter, weaker, version of the
proposition, whereas to use (in other proofs) that R is symmetric we may use the
stronger version.

1.6 Lemma. Every reflexive relation R on set U satisfies: u∈ [u ]R , for all u∈U .

Proof. By calculation:

u∈ [u ]R
⇔ { definition of [u ]R }

uRu

⇔ { R is reflexive }
true

�
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1.7 Lemma. Every symmetric relation R on set U satisfies: v ∈ [u ]R ⇔ u∈ [v ]R , for
all u, v∈U .

Proof. By calculation:

v ∈ [u ]R
⇔ { definition of [u ]R }

uRv

⇔ { R is symmetric }
v Ru

⇔ { definition of [v ]R }
u∈ [v ]R

�

* * *

If R is a relation on a finite set S , then special properties like reflexivity, symmetry
and transitivity can be read off from the adjacency matrix. For example, R is reflexive
if and only if the main diagonal of R ’s adjacency matrix contains 1 ’s only, that is if
AR[ i, i ] = 1 for all (relevant) i .

Relation R is symmetric if and only if the transposed matrix AT
R equals AR .

The transposed matrix MT of an m×n matrix M is the n×m matrix defined by,
for all i, j :

MT[j, i ] = M [ i, j ] .

1.2 Equivalence relations

Relations that are reflexive, symmetric, and transitive deserve some special attention:
they are called equivalence relations.

1.8 Definition. A relation R is an equivalence relation if and only if it is reflexive,
symmetric, and transitive.
2

If elements u and v are related by an equivalence relation R , that is, if uRv , then
u and v are also called “equivalent (under R )”.

1.9 Example. On every set relation “equals” ( = ) is an equivalence relation.

1.10 Example. Consider the plane R2 and in it the set S of straight lines. We call two
lines in S parallel if and only if they are equal or do not intersect. Hence, two lines
in S are parallel if and only if their slopes are equal. Being parallel is an equivalence
relation on the set S .
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1.11 Example. We consider a fixed d∈Z , d> 0 , and we define a relation R on Z
by: mRn if and only if m−n is divisible by d . The latter can be formulated
as (m−n) modd = 0 , and a more traditional mathematical rendering of this is
m=n (mod d) . Thus defined, R is an equivalence relation.
2

Actually, the last two examples are instances of Theorem 1.13. Before giving this
theorem, first we introduce equivalence classes and prove a lemma about them.
If R is an equivalence relation on set U , then, for every u∈U the set [u ]R is called
the equivalence class of u . Because equivalence relations are reflexive we have, as we
have seen in lemma 1.6 : u∈[u ]R , for all u∈U . From this it follows immediately that
equivalence classes are nonempty. Equivalence classes have several other interesting
properties. For example, the equivalence classes of two elements are equal if and only
if these elements are equivalent:

1.12 Lemma. Every equivalence relation R on set U satisfies, for all u, v∈U :

[u ]R = [v ]R ⇔ uR v .

Proof. The left-hand side of this equivalence contains the function [ · ]R , whereas the
right-hand side does not. To eliminate [ · ]R we rewrite the left-hand side first:

[u ]R = [v ]R
⇔ { set equality }

(∀x : x∈U : x∈[u ]R ⇔ x∈[v ]R )

⇔ { definition of [ · ]R }
(∀x : x∈U : uRx ⇔ vRx ) ,

hence, the lemma is equivalent to:

(∀x : x∈U : uRx ⇔ vRx ) ⇔ uR v .

This we prove by mutual implication.

“⇒ ”: (∀x : x∈U : uRx ⇔ vRx )

⇒ { instantiation x := v }
uRv ⇔ vRv

⇔ { R is an equivalence relation, so it is reflexive }
uR v .

“⇐ ”: Assuming uRv and for any x∈U we prove uRx ⇔ vRx , again by mutual
implication:

uR x

⇔ { assumption }
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uR v ∧ uR x

⇔ { R is an equivalence relation, so it is symmetric }
v R u ∧ uR x

⇒ { R is an equivalence relation, so it is transitive }
v R x ,

and:

v R x

⇔ { assumption }
uR v ∧ v R x

⇒ { R is an equivalence relation, so it is transitive }
uR x ,

which concludes the proof of this lemma.
�

1.13 Theorem. A relation R on a set U is an equivalence relation if and only if a set V
and a function f : U → V exists such that

xR y ⇔ f(x) = f(y)

for all x, y∈U .

Proof.
First we prove the ’if’-part: assume such a V and f exists; we have to prove that

R is an equivalence relation.
Choose x ∈ U arbitrary, then xRx holds since f(x) = f(x). So R is reflexive.
Choose x, y ∈ U arbitrary for which then xRy holds. Then f(x) = f(y), so also

f(y) = f(x), so yRx holds. So R is symmetric.
Choose x, y, z ∈ U arbitrary for which xRy and yRz holds. Then f(x) = f(y)

and f(y) = f(z), so also f(x) = f(z). Hence xRz holds. This proves that R is
transitive.

Combining these three properties we conclude that R is an equivalence relation,
concluding the ’if’-part.

Next we prove the ’only if’-part: assume R is an equivalence relation; we have
to find V and f having the required property.

Choose V to be the set of all subsets of U and define f(x) = [x ]R for all x ∈ U .
Then the required property

xR y ⇔ f(x) = f(y)

holds due to Lemma 1.12.
�
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1.14 Example. We reconsider Example 1.11. The predicate (m−n) modd = 0 is equiv-
alent to mmodd = nmodd , so with Z both for set U and for set V , function f ,
defined by f(m) = mmodd , for all m∈Z , does the job.
2

As a further investigation of equivalence classes we now observe that they are either
disjoint or equal:

1.15 Lemma. Every equivalence relation R on set U satisfies, for all u, v∈U :

[u ]R ∩ [v ]R = ø ∨ [u ]R = [v ]R .

Proof. This proposition is equivalent to:

[u ]R ∩ [v ]R 6= ø ⇒ [u ]R = [v ]R ,

which we prove as follows:
[u ]R ∩ [v ]R 6= ø

⇔ { definition of ø and ∩ }
(∃x : x∈U : x∈[u ]R ∧x∈[v ]R )

⇔ { definition of [ · ]R }
(∃x : x∈U : uRx∧ vRx )

⇒ { R is symmetric and transitive }
(∃x : x∈U : uRv )

⇒ { predicate calculus }
uR v

⇔ { lemma 1.12 }
[u ]R = [v ]R�

The equivalence classes of an equivalence relation “cover” the set:

1.16 Lemma. Every equivalence relation R on set U satisfies: (
⋃

u:u∈U [u ]R) = U .

Proof. By mutual set inclusion. On the one hand, every equivalence class is a subset
of U , that is: [u ]R ⊆ U , for all u∈U ; hence, their union, (

⋃
u:u∈U [u ]R) , is a

subset of U as well. On the other hand, we have for every v∈U that v∈[v ]R , so,

also v ∈ (
⋃

u:u∈U [u ]R ) . Hence, U is a subset of (
⋃

u:u∈U [u ]R ) too.

�

These lemmas show that the equivalence classes of an equivalence relation form a,
so-called, partition of set U .

1.17 Definition. A partition of set U is a set Π of nonempty and disjoint subsets of U ,
the union of which equals U . Formally, that set Π is a partition of U means the
conjunction of:
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(a) (∀X : X∈Π : X⊆U ∧ X 6= ø )

(b) (∀X,Y : X,Y ∈Π : X∩Y = ø ∨ X =Y )

(c) (
⋃

X:X∈ΠX ) = U

2

Clause (a) in this definition expresses that the elements of a partition of U are
nonempty subsets of U , clause (b) expresses that the sets in a partition are disjoint,
whereas clause (c) expresses that the sets in a partition together “cover the whole”
U . Phrased differently, clause (b) and (c) together express that every element of U
is an element of exactly one of the sets in the partition.

Conversely, every partition also represents an equivalence relation. Every element
of set U is element of exactly one of the subsets in the partition. “Being in the same
subset” (in the partition) is an equivalence relation.

1.18 Theorem. Every partition Π of a set U represents an equivalence relation on U ,
the equivalence classes of which are the sets in Π .
Proof. Because Π is a partition, every element of U is an element of a unique subset
in Π . Now, the relation “being elements of the same subset in Π ” is an equivalence
relation. Formally, we prove this by defining a function ϕ : U→Π , as follows, for all
u∈U and X∈Π :

ϕ(u) =X ⇔ u∈X .

Thus defined, ϕ is a function indeed, because for every u∈U one and only one X∈Π
exists satisfying u∈X . Now relation ∼ on U , defined by, for all u, v∈U :

u∼ v ⇔ ϕ(u) = ϕ(v) ,

is an equivalence relation – Theorem 1.13 ! – . Furthermore, by its very construction
ϕ satisfies u∈ϕ(u) and, hence, ϕ(u) is the equivalence class of u , for all u∈U .

�

1.3 Operations on Relations

Relations between two sets are subsets of the Cartesian Product of these two sets.
Hence, all usual set operations can be applied to relations as well. In addition, rela-
tions admit of some dedicated operations that happen to have nice algebraic proper-
ties. It is even possible to develop a viable Relational Calculus, but this falls outside
the scope of this text.

These relational operations play an important role in the mathematical study of
programming constructs, such as recursion and data structures. They are also useful
in some theorems about graphs. We will see applications of this later.
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1.3.1 Set operations

• For sets U and V , the extreme relations from U to V are the empty relation ø
and the full relation U×V . For the sake of brevity and symmetry, we denote
these two relations by ⊥ (“bottom”) and > (“top”) , respectively; element
wise, they satisfy, for all u∈U and v∈V :

¬(u⊥v) ∧ u>v .

For example, every relation R satisfies: ⊥⊆R and R⊆> , which is why we
call ⊥ and > the extreme relations.

• If R and S are relations, with the same domain and and with the same range,
then R∪S , and R∩S , and R \S are relations too, between the same sets as
R and S , and with the obvious meaning. The complement RC of relation R
is >\R .

• These operations have their usual algebraic properties. In particular, > and ⊥
are the identity elements of ∪ and ∩ , respectively: R ∪⊥ = R and R ∩> = R .
They are zero elements as well, that is: R ∪> = > and R ∩⊥ = ⊥ .

1.3.2 Transposition

With every relation R from set U to set V a corresponding relation exists from
V to U that contains (v, u) if and only if (u, v)∈R . This relation is called the
transposition of R and is denoted by RT . (Some mathematicians use R−1 , but
this may be confusing: transposition is not the same as inversion, especially with
functions.) Formally, transposition is defined as follows.

1.19 Definition. For every relation R from set U to set V , relation RT from V to U
is defined by, for all v∈V and u∈U :

v RTu ⇔ uRv .

1.20 Lemma. Transposition distributes over all set operations, that is:

⊥T = ⊥ and: >T = > ;
(R ∪ S)T = RT ∪ ST ;
(R ∩ S)T = RT ∩ ST ;
(R \ S)T = RT \ ST ;
(RC)T = (RT)C .

1.21 Lemma. Transposition is its own inverse, that is, every relation R satisfies:

(RT)T = R .

2



15

For finite relations there is a direct connection between relation transposition and
matrix transposition:

1.22 Lemma. If AR is an adjacency matrix for relation R then (AR)T is an adjacency
matrix for RT .

1.23 Examples. Properties of relations, like (ir)reflexivity and (anti)symmetry, can now
be expressed concisely by means of relational operations; for R a relation on set U :

• “R is reflexive ” ⇔ IU ⊆ R

• “R is irreflexive ” ⇔ IU ∩ R = ⊥

• “R is symmetric ” ⇔ RT = R

• “R is antisymmetric ” ⇔ R ∩ RT ⊆ IU

2

Unfortunately, transitivity cannot be expressed so nicely in terms of the set operations.
For this we need yet another operation on relations, which turns out to be quite useful
for other purposes too.

1.3.3 Composition

Let R be a relation from U to V and let S be a relation from V to W . If uRv ,
for some v∈V and if vSw , for that same v , then we say that u is related to w
in the composition of R and S , written as R ;S . So, the composition of R and S
is a relation from U to W . Phrased differently, in this composition u∈U is related
to w∈W if u and w are “connected via” some “intermediate” value in V . This is
rendered formally as follows.

1.24 Definition. If R is a relation from U to V , and if S is a relation from V to W ,
then the composition R ; S is the relation from U to W defined by, for all u∈U
and w∈W :

u (R ;S)w ⇔ (∃v : v∈V : uRv ∧ vSw ) .

1.25 Example. Let R = { (1, 2) , (2, 3) , (2, 4) , (3, 1) , (3, 3)} be a relation from
{1, 2, 3} to {1, 2, 3, 4} and let S = { (1, a) , (2, c) , (3, a) , (3, d) , (4, b)} be a rela-
tion from {1, 2, 3, 4} to {a, b, c, d} . Then the composition R ;S is the relation
{ (1, c) , (2, a) , (2, b) , (2, d) , (3, a) , (3, d)} , from {1, 2, 3} to {a, b, c, d} .

1.26 Lemma. For any endorelation R we have:

R is transitive ⇔ (R ;R) ⊆ R .
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Proof. Assume R is transitive. Let (x, y) ∈ R;R. Then there exists z such that
(x, z) ∈ R and (z, y) ∈ R. By transitivity we conclude that (x, y) ∈ R. So we have
proved R;R ⊆ R.

Conversely, assume R;R ⊆ R. Let xRy and yRz. Then by definition of compo-
sition we have (x, z) ∈ R;R. Since R;R ⊆ R we conclude (x, z) ∈ R, by which we
have proved that R is transitive.
�

1.27 Lemma. The identity relation is the identity of relation composition. More precisely,
every relation R from set U to set V satisfies: IU ; R = R and R ; IV = R .
Proof. We prove the first claim; the second is similar.

If (x, y) ∈ IU ;R then there exists z ∈ U such that (x, z) ∈ IU and (z, y) ∈ R.
From the definition of IU we conclude x = z, so from (z, y) ∈ R we conclude (x, y) ∈ R.

Conversely, let (x, y) ∈ R. Then (x, x) ∈ IU , so (x, y) ∈ IU ;R.

�

1.28 Lemma. Relation composition is associative, that is, all relations R,S, T satisfy:
(R ; S) ; T = R ; (S ; T ) .

Proof. For all u, x we calculate:

u ( (R ;S) ; T ) x

⇔ { definition of ; }
(∃w :: u (R ;S)w ∧ wT x )

⇔ { definition of ; }
(∃w :: (∃v :: uRv∧ vSw ) ∧ wT x )

⇔ { ∧ over ∃ }
(∃w :: (∃v :: uRv∧ vSw ∧ wT x ) )

⇔ { swapping dummies }
(∃v :: (∃w :: uRv∧ vSw ∧ wT x ) )

⇔ { (almost) the same steps as above, in reverse order }
u (R ; (S ;T ) ) x

�

Remark: In other mathematical texts relation composition is sometimes called
“(relational) product”, denoted by infix operator ∗ . From a formal point
of view, this is harmless, of course, but it is important to keep in mind that
composition is not commutative: generally, R ; S differs from S ;R . This
is the reason why we prefer to use an asymmetric symbol, “ ; ”, to denote
composition: from a practical point of view the term “product” and the
symbol “ ∗ ” may be misleading.

2
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An important property is that relation composition distributes over arbitrary unions
of relations, both from the left and from the right:

1.29 Theorem. Every relation R and every collection Ω of relations satisfies:

R ; (
⋃

X:X∈ΩX ) = (
⋃

X:X∈ΩR ;X ) ,

and also:

(
⋃

X:X∈ΩX ) ; R = (
⋃

X:X∈ΩX ;R ) .

Proof. We prove the first claim; the second is similar.
(x, y) ∈ R; (

⋃
X:X∈ΩX)

⇔ { definition composition }
∃z : (x, z) ∈ R ∧ (z, y) ∈

⋃
X:X∈ΩX

⇔ { definition
⋃
}

∃z : (x, z) ∈ R ∧ ∃X ∈ Ω : (z, y) ∈ X
⇔ { property ∃ }

∃X ∈ Ω : ∃z : (x, z) ∈ R ∧ (z, y) ∈ X
⇔ { definition composition }

∃X ∈ Ω : (x, y) ∈ R;X

⇔ { definition
⋃
}

(x, y) ∈
⋃

X:X∈ΩR;X.

�

Corollary: Relation composition is monotonic, that is, for all relations R,S, T :

S⊆T ⇒ R ; S ⊆ R ; T , and also:

R⊆S ⇒ R ; T ⊆ S ; T .
2

* * *

The n -fold composition of a relation R with itself also is written as Rn , as follows.

1.30 Definition. (exponentiation of relations) For any (endo)relation R and for all
natural n , we define (recursively):

R0 = I ∧ Rn+1 = R ;Rn .

2

For example, the formula expressing transitivity of R , as in Lemma 1.26, can now
also be written as: R2 ⊆ R .
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1.31 Lemma. For endorelation R and for all natural m and n :

Rm+n = Rm ;Rn .

Proof. We apply induction on m. For m = 0 using Lemma 1.27 we obtain

R0+n = Rn = I;Rn = R0;Rn.

For the induction step we assume the induction hypothesis Rm+n = Rm;Rn.

R(m+1)+n = R(m+n)+1

= R;Rm+n (definition)
= R; (Rm;Rn) (induction hypothesis)
= (R;Rm);Rn (associativity, Lemma 1.28)
= Rm+1;Rn, (definition)

concluding the proof.
�

* * *

In the representation of relations by adjacency matrices, relation composition is rep-
resented by matrix multiplication. That is, if AR is an adjacency matrix for relation
R and if AS is an adjacency matrix for relation S then the product matrix AR×AS

is an adjacency matrix for the composition R ;S . This matrix product is well-defined
only if the number of columns of matrix AR equals the number of rows of matrix
AS . This is true because the number of columns of AR equals the size of the range
of relation R . As this range also is the domain of relation S – otherwise composition
of R and S is impossible – this size also equals the number of rows of AS .

Recall that adjacency matrices actually are boolean matrices; hence, the matrix
multiplication must be performed with boolean operations, not integer operations, in
such a way that addition and multiplication boil down to disjunction (“or”) and con-
junction (“and”) respectively. So, a formula like (Σj :: AR[ i, j ] ∗AS [j, k ] ) actually
becomes: (∃j :: AR[ i, j ]∧AS [j, k ] ) .

1.32 Example. Let R = { (1, 2) , (2, 3) , (2, 4) , (3, 1) , (3, 3)} be a relation from
{1, 2, 3} to {1, 2, 3, 4} and let S = { (1, a) , (2, c) , (3, a) , (3, d) , (4, b)} be a relation
from {1, 2, 3, 4} to {a, b, c, d} . Then adjacency matrices for R and S are: 0 1 0 0

0 0 1 1
1 0 1 0

 , and:


1 0 0 0
0 0 1 0
1 0 0 1
0 1 0 0

 .

The product of these matrices is an adjacency matrix for R ;S : 0 0 1 0
1 1 0 1
1 0 0 1

 .
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1.3.4 Closures

Some (endo)relations have properties, like reflexivity, symmetry, or transitivity, whereas
other relations do not. For any such property, the closure of a relation with respect
to that property is the smallest extension of the relation that does have the property.
More precisely, it is fully characterized by the following definition.

1.33 Definition. (closure) Let P be a predicate on relations, then the P-closure of
relation R is the relation S satisfying the following three requirements:

(a) R ⊆ S ,

(b) P(S) ,

(c) R⊆X ∧ P(X) ⇒ S⊆X , for all relations X.

Indeed, (a) expresses that S is an extension of R , and (b) expresses that S has
property P , and (c) expresses that S is contained in every relation X that is an
extension of R and that has property P ; this is what we mean by the smallest
extension of R .

For instance, if a relation R already has property P , so P(R) holds, then S = R
satisfies the properties (a), (b) and (c), so we conclude that then the P-closure of R
is R itself.

For any given property P and relation R the P-closure of R need not exist,
but if it exists it is unique, as is stated in the following theorem.

1.34 Theorem. If both S and S′ satisfy properties (a), (b) and (c) from Definition 1.33,
then S = S′.

Proof. By (a) and (b) for S we conclude R ⊆ S and P(S), so by property (c) for S′

we conclude S′ ⊆ S.
By (a) and (b) for S′ we conclude R ⊆ S′ and P(S′), so by property (c) for S

we conclude S ⊆ S′.
Combining S′ ⊆ S and S ⊆ S′ yields S = S′. �

remark: In this subsection we are studying properties of the general shape
ϕ(X)⊆X , where ϕ is a monotonic function from relations to relations,
and where parameter X is a relation. In a later chapter, on Partial Orders,
we will see that for monotonic functions ϕ every relation does indeed have
a closure with respect to that property. The requirements for such a closure
now are that it is the smallest of all relations X satisfying:

R⊆X ∧ ϕ(X)⊆X ,

which can be rewritten into this (logically equivalent) form:

R ∪ ϕ(X) ⊆ X .
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The smallest relation having this property is the intersection of all relations
having that property, that is: (

⋂
X:ϕ(X)⊆X X ) . We will also see that, under

some additional conditions, this smallest relation is equal to the union of all
“approximations from below”, that is: (

⋃
i:0≤i ϕ

i(⊥) ) . As these are rather

general properties, which are not specific to closures of relations, we will not
elaborate this here.

2

* * *

The simplest possible property of relations is reflexivity. The reflexive closure of an
(endo)relation R now is the smallest extension of R that is reflexive.

1.35 Theorem. The reflexive closure of a relation R is R ∪ I.

Proof. We have to prove (a), (b) and (c) for P being reflexivity. Indeed, R ⊆ R ∪ I,
proving (a), and R∪I is reflexive since I ⊆ R∪I, proving (b). For proving (c) assume
that R ⊆ X and X reflexive; we have to prove that R ∪ I ⊆ X. Let (x, y) ∈ R ∪ I.
Then (x, y) ∈ R or (x, y) ∈ I. If (x, y) ∈ R then from R ⊆ X we conclude (x, y) ∈ X;
if (x, y) ∈ I then from reflexivity we conclude that (x, y) ∈ X. So in both cases we
have (x, y) ∈ X, so R ∪ I ⊆ X, concluding the proof. �

1.36 Theorem. The symmetric closure of a relation R is R ∪RT.

Proof. We have to prove (a), (b) and (c) for P being symmetry. Indeed, R ⊆ R∪RT,
proving (a).

For proving (b) let (x, y) ∈ R ∪RT. If (x, y) ∈ R then (y, x) ∈ RT ⊆ R ∪RT. If
(x, y) ∈ RT then (y, x) ∈ (RT)T = R ⊆ R ∪ RT. So in both cases (y, x) ∈ R ∪ RT,
proving that iR ∪RT is symmetric, so proving (b).

For proving (c) assume that R ⊆ X and X is symmetric; we have to prove that
R ∪ RT ⊆ X. Let (x, y) ∈ R ∪ RT. If (x, y) ∈ R then from R ⊆ X we conclude
(x, y) ∈ X. If (x, y) ∈ RT then (y, x) ∈ R ⊆ X; since X is symmetric we conclude
(x, y) ∈ X. So in both cases we have (x, y) ∈ X, concluding the proof. �

* * *

The game becomes more interesting when we ask for the transitive closure of a relation
R .

We define

R+ =
∞⋃

i=1

Ri = R ∪R2 ∪R3 ∪R4 ∪ · · · .
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1.37 Theorem. The transitive closure of a relation R is R+.

Proof. We have to prove (a), (b) and (c) for P being transitivity. Indeed, R ⊆ R+,
proving (a).

For proving (b) we have to prove that R+ is transitive. So let (x, y), (y, z) ∈ R+.
Since R+ =

⋃∞
i=1R

i there are i, j ≥ 1 such that (x, y) ∈ Ri and (y, z) ∈ Rj . So
(x, z) ∈ Ri;Rj = Ri+j by Lemma 1.31. Since Ri+j ⊆

⋃∞
i=1R

i = R+ we conclude
(x, z) ∈ R+, concluding the proof of (b).

For proving (c) assume that R ⊆ X and X is transitive; we have to prove that
R+ ⊆ X. For doing so first we prove that Rn ⊆ X for all n ≥ 1, by induction on n. For
n = 1 this is immediate from the assumption R ⊆ X. So next assume the induction
hypothesis Rn ⊆ X and we will prove Rn+1 ⊆ X. Let (x, y) ∈ Rn+1 = R;Rn, so there
exists z such that (x, z) ∈ R and (z, y) ∈ Rn. Since R ⊆ X we conclude (x, z) ∈ X,
and by the induction hypothesis we conclude (z, y) ∈ X. Since X is transitive we
conclude (x, y) ∈ X. Hence Rn+1 ⊆ X. By the principle of induction we have proved
Rn ⊆ X for all n ≥ 1.

For (c) we had to prove R+ ⊆ X. So let (x, y) ∈ R+ =
⋃∞

i=1R
i. Then there

exists n ≥ 1 such that (x, y) ∈ Rn. Since Rn ⊆ X we conclude (x, y) ∈ X, concluding
the proof. �

In computer science the notation + is often used for ‘one or more times’, while
notation ∗ is often used for ‘zero or more times’. Consistent with this convention we
define

R∗ =
∞⋃

i=0

Ri = I ∪R ∪R2 ∪R3 ∪R4 ∪ · · · .

It can be shown that R∗ is the reflexive-transitive closure of R, that is, the
P-closure for P being the conjunction of reflexivity and transitivity.

1.4 Exercises

1. Give an example of a relation that is:

(a) both reflexive and irreflexive;

(b) neither reflexive nor irreflexive;

(c) both symmetric and antisymmetric;

(d) neither symmetric nor antisymmetric.

2. For each of the following relations, investigate whether it is (ir)reflexive, (anti-)
symmetric, and/or transitive:

(a) R = { (x, y)∈R2 | x+1 < y }
(b) S = { (x, y)∈R2 | x< y+1 }
(c) T = { (x, y)∈Z2 | x< y+1 }
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3. Prove that each irreflexive and transitive relation is antisymmetric.

4. Which of the following relations on set U , with U = {1, 2, 3, 4} , is reflexive,
irreflexive, symmetric, antisymmetric, or transitive?

(a) { (1, 3) , (2, 4) , (3, 1) , (4, 2)} ;
(b) { (1, 3) , (2, 4)} ;
(c) { (1, 1) , (2, 2) , (3, 3) , (4, 4) , (1, 3) , (2, 4) , (3, 1) , (4, 2)} ;
(d) { (1, 1) , (2, 2) , (3, 3) , (4, 4)} ;
(e) { (1, 1) , (2, 2) , (3, 3) , (4, 4) , (1, 2) , (2, 3) , (3, 4) , (4, 3) , (3, 2) , (2, 1)} .

5. Construct for each of the relations in Exercise 4 the adjacency matrix.

6. Let R be a relation on a set U . Prove that, if [u ]R 6= ø , for all u∈U , and if
R is symmetric and transitive, then R is reflexive.

7. The natural numbers admit addition but not subtraction: if a< b the difference
a−b is undefined, because it is not a natural number. To achieve a structure in
which all differences are defined we need the “integer numbers”. These can be
constructed from the naturals in the following way, a process called “definition
by abstraction”.

We consider the set V of all pairs of natural numbers, so V = N×N . On V
we define a relation ∼ , as follows, for all a, b, c, d∈N :

(a, b) ∼ (c, d) ⇔ a+d = c+b .

(a) Prove that ∼ is an equivalence relation.
(b) Formulate in words what this equivalence relation expresses.
(c) We investigate the equivalence classes of ∼ . Obviously, there is a class

containing the pair (0, 0) . Prove that, in addition, every other class
contains exactly one pair of the shape either (a, 0) or (0, a) , so not both
in the same class, with 1≤ a .

(d) We call the pairs (0, 0) , (a, 0) and (0, a) , with 1≤ a , the “represen-
tants” of the equivalence classes. These classes can now be ordered in the
following way, by means of their representants:

· · · , (0, 2), (0, 1), (0, 0), (1, 0), (2, 0), (3, 0), · · · .

We call these classes “integer numbers”; a more usual notation of the
representants is:

· · · ,−2,−1, 0,+1,+2,+3, · · · .

Thus, we obtain the integer numbers indeed. To illustrate this: define, on
the set of representants, two binary operators pls and min that correspond
with the usual “addition” and “subtraction”. Also define the “less than”
relation on the set of representants.
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8. Prove that every reflexive and transitive endorelation R satisfies: R2 = R .

9. Construct for each relation, named R here, in Exercise 4 an adjacency matrix
for R2 .

10. Suppose R and S are finite relations with adjacency matrices A and B ,
respectively. Define adjacency matrices, in terms of A and B , for the relations
R∪S , R∩S , R\S , and RC .

11. Suppose R and S are endorelations. Prove or disprove:

(a) If R and S are reflexive, then so is R ;S .

(b) If R and S are irreflexive, then so is R ;S .

(c) If R and S are symmetric, then so is R ;S .

(d) If R and S are antisymmetric, then so is R ;S .

(e) If R and S are transitive, then so is R ;S .

(f) If R and S are equivalence relations, then so is R ;S .

12. Prove that every endorelation R satisfying R⊆I satisfies:

(a) R is symmetric.

(b) R is antisymmetric.

(c) R is transitive.

13. Let D be the set of differentiable functions f : R→ R . On D we define a
relation ∼ as follows, for all f, g∈D :

f∼g ⇔ “ function f−g is constant” .

Prove that ∼ is an equivalence relation. How can relation ∼ be defined in
the way of Theorem 1.13 ?

14. We consider the relation ∼ on Z defined by, for all x, y∈Z :

x∼y ⇔ (∃z ∈ Z : x− y = 7z)

Prove that ∼ is an equivalence relation. Describe the equivalence classes of ∼ .
In particular, establish how many equivalence classes ∼ has.

15. Let R and S be two equivalence relations on a finite set U satisfying R ⊆ S.

(a) Prove that every equivalence class of R is a subset of an equivalence class
of S.

(b) Let nR be the number of equivalence classes of R and let nS be the number
of equivalence classes of S. Prove that nR ≥ nS .
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16. On the set U = {1, 2, 3, 4, 5, 6} define the relation

R = {(i, i) | i ∈ U} ∪ {(1, 2), (2, 1), (2, 3), (3, 2), (1, 3), (3, 1), (4, 6), (6, 4)}.

Show that R is an equivalence relation. Establish what are the equivalence
classes of R, in particular, how many equivalence classes R has, and how many
elements each of them has.

17. We consider a linear vector space V and a (fixed) subspace W of V On V we
define a relation ∼ by, for all x, y∈V :

x∼y ⇔ x−y ∈W .

Prove that ∼ is an equivalence relation. Describe the equivalence classes for
the special case that V = R2 W is the straight line given by the equation
x1+x2 = 0 . Also characterize, for this special case, the equivalence relation in
the way of Theorem 1.13 .

18. An adjacency matrix for a relation R is:
(

0 1
1 0

)
. Investigate whether R

is (ir)reflexive, (anti)symmetric, and/or transitive.

19. Prove that (R ;S)T = ST ;RT .

20. (a) Prove that, for all sets A,B,C : A⊆C ∧ B⊆C ⇔ A∪B ⊆ C .

(b) Prove that, for all sets A,B : A⊆B ⇔ A∪B = B and also:
A⊆B ⇔ A∩B = A .

(c) Prove that relation composition distributes over union, that is:
R ; (S∪T ) = (R ;S) ∪ (R ;T ) and: (R∪S) ; T = (R ;T ) ∪ (S ;T ) .

(d) Using the previous result(s), prove that ; is monotonic, that is:
S⊆T ⇒ R ; S ⊆ R ; T and also: R⊆S ⇒ R ; T ⊆ S ; T .

21. Prove that, indeed, R ∪ RT is the smallest solution of equation, with unknown
X : R⊆X ∧ XT⊆X .

22. Prove that R ;⊥ = ⊥ , for every relation R .

23. Prove that > is a solution of each of the equations (with unknown X ) in
Subsection 1.3.4.

24. We consider a relation R from U to V for which it is given that it is a function.
Prove that R is surjective if and only if IV = RT ;R .

25. Relation R , on Z , is defined by mRn ⇔ m+1 = n , for all m,n∈Z . What is
relation R+ ?

26. For some given set Ω , a function φ , mapping subsets of Ω to subsets of Ω , is
called monotonic if X⊆Y ⇒ φ(X)⊆φ(Y ) , for all X,Y ⊆Ω .
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(a) We consider the equations: X : φ(X)⊆X and: X : φ(X) = X , and we
assume they have smallest solutions; so, proving the existence of these
smallest solutions is not the subject of this exercise. Prove that, if φ is
monotonic then the smallest solutions of these equations are equal.

(b) For each of the closures in Subsection 1.3.4, define a function φ such that
the corresponding equation is equivalent to φ(X)⊆X ; for each case, prove
that φ is monotonic. What is Ω in these cases?

27. Prove that R∗ = I ∪ R+ and that R+ = R ;R∗ .

28. Prove that for every endorelation R : “R is transitive” ⇔ R+ = R .

29. We consider two endorelations R and S satisfying R ;S ⊆ S ;R+ . Prove that:
R+ ;S ⊆ S ;R+ .

30. Let R,S be relations on a set U satisfying R ⊆ S. Prove that R;R ⊆ S;S.

31. Give an example of relations R,S on a set U satisfying R;R ⊆ S;S, but not
R ⊆ S.

32. Let R,S be relations on a set U satisfying R ⊆ S. Prove that R+ ⊆ S+.

33. Let R,S be two relations on a set U , of which R is transitive and S is reflexive.
Prove that

(R;S;R)2 ⊆ (R;S)3.

34. Let R,S be two relations on a set U .

(a) Prove that (R;S)n;R = R; (S;R)n for all n ≥ 0.

(b) Prove that (R;S)∗;R = R; (S;R)∗.

35. (a) Let R be an endorelation and let S be a transitive relation. Prove that:

R⊆S ⇒ R+⊆S .

(b) Apply this, by defining suitable relations R and S , to prove that every
function f on N satisfies:

(∀i : 0≤i<n : fi = fi+1 ) ⇒ f0 = fn , for all n∈N .

36. We call a relation on a set inductive if it admits proofs by Mathematical Induc-
tion. Formally, a relation R on a set V is inductive if, for every predicate P
on V :

(∀v : v∈V : (∀u : uRv : P (u)) ⇒ P (v) ) ⇒ (∀v : v∈V : P (v)) .

Prove that, for every relation R :

“R is inductive” ⇒ “R+ is inductive” .
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Hint: To prove the right-hand side of this implication one probably will introduce
a predicate P . To apply the (assumed) left-hand side of the implication one
may select any predicate desired, not necessarily P : use predicate Q defined
by, for all v∈V : Q(v) = (∀u : uR∗v : P (u)) .

37. On the natural numbers a distinction is often made between (so-called) “weak”
(or “step-by-step”) induction and “strong” (or “course-of-values”) induction.
Weak induction is the property that, for every predicate P on N :

P (0) ∧ (∀n :: P (n)⇒P (n+1)) ⇒ (∀n :: P (n)) ,

whereas strong induction is the property that, for every predicate P on N :

(∀n :: (∀m : m<n : P (m))⇒P (n) ) ⇒ (∀n :: P (n)) ,

Show that the proposition:

“weak induction” ⇒ “strong induction” ,

is a special case of the proposition in the previous exercise.

38. Construct an example, as simple as possible, illustrating that relation compo-
sition is not commutative, which means that it is not true that: R ;S = S ;R ,
for all relations R,S .

39. Suppose that endorelation R satisfies I ∩R+ = ⊥ . What does this mean?

40. We investigate some well-known relations on R :

(a) What is the reflexive closure of < ?

(b) What is the symmetric closure of < ?

(c) What is the symmetric closure of ≤ ?

(d) What is the reflexive closure of 6= ?

Compute for each of the relations in Exercise 4 their reflexive, symmetric, and
transitive closures.


